A stochastic coupling method for atomic-to-continuum Monte-Carlo simulations
نویسندگان
چکیده
In this paper, we propose a multiscale coupling approach to performMonte-Carlo simulations on systems described at the atomic scale and subjected to random phenomena. The method is based on the Arlequin framework, developed to date for deterministic models involving coupling a region of interest described at a particle scale with a coarser model (continuum model). The new method can result in a dramatic reduction in the number of degrees of freedom necessary to perform Monte-Carlo simulations on the fully atomistic structure. The focus here is on the construction of an equivalent stochastic continuum model and its coupling with a discrete particle model through a stochastic version of the Arlequin Method. Concepts from the Stochastic Finite Element Method, such as the Karhünen–Loeve expansion and Polynomial Chaos, are extended to multiscale problems so that Monte-Carlo simulations are only performed locally in subregions of the domain occupied by particles. Preliminary results are given for a 1D structure with harmonic interatomic potentials. 2008 Elsevier B.V. All rights reserved.
منابع مشابه
Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations
Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...
متن کاملGyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations
The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...
متن کاملStochastic Assessment of Voltage Sags in Distribution Networks
This paper compares fault position and Monte Carlo methods as the most common methods in stochastic assessment of voltage sags. To compare their abilities, symmetrical and unsymmetrical faults with different probability distribution of fault positions along the lines are applied in a test system. The voltage sag magnitude in different nodes of test system is calculated. The problem with the...
متن کاملCoupling kinetic Monte-Carlo and continuum models with application to epitaxial growth
We present a hybrid method for simulating epitaxial growth that combines kinetic Monte-Carlo (KMC) simulations with the Burton–Cabrera–Frank model for crystal growth. This involves partitioning the computational domain into KMC regions and regions where we time-step a discretized diffusion equation. Computational speed and accuracy are discussed. We find that the method is significantly faster ...
متن کاملSensitivity Analysis of a Wideband Backward-wave Directional Coupler Using Neural Network and Monte Carlo Method (RESEARCH NOTE)
In this paper sensitivity analysis of a wideband backward-wave directional coupler due to fabrication imperfections is done using Monte Carlo method. For using this method, a random stochastic process with Gaussian distribution by 0 average and 0.1 standard deviation is added to the different geometrical parameters of the coupler and the frequency response of the coupler is estimated. The appli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008